FORMULA & CONVERSION SHEET FOR COLLECTION SYSTEM | | | | ı | | T | | | |--|--------------------|---|---|---|--------------------------------|---|---| | CONVERSIONS | | | FLOW AND VELOCITY | | SLOPE | = | <u>FALL IN FEET</u>
LENGTH IN FEET | | 1 psi
1 ft. of head
1 cuft of water | = = | 2.31 ft. of head
0.433 psi
7.48 gallons | | eubic ft per sec. (cfs) | GRADE | = | RISE IN FEET RUN IN FEET | | 1 cuft of water
1 gallon
1 gallon
1 Liter | * =
=
=
= | 62.4 lbs.
8.34 lbs.
3,785 ml
1,000 ml | "V" = | VELOCITY expressed in ft per second (fps) | VELOCITY | = | DISTANCE TRAVELED IN FEET TIME REQUIRED IN SECOND | | 1 Liter
1 Liter
1 mg/L
1 ppm | _
=
=
= | 1,000 m
1,000 grams
8.34 lbs/MG
1 mg/L | "A" = AREA expressed in square feet (sqft) Q = A x V V = Q ÷ A A = Q ÷ V Standard Design Criteria 0.17 lbs BOD5 per/ per day 0.20 lbs TSS per/ per day 0.0048 lbs phosphorus per/per/day 100 gal per/per day | | DIFFERENCE IN ELEVATION | = | % GRADE X PIPE RUN IN F | | 1 ml
1 pound
1 pound | =
=
= | 1 gram
453.6 grams
7,000 grains | | | PUMP
RATE/GPM | = | INFLUENT RATE – RISE
RATE WITH PUMP RUNNING | | 1 kilogram
1 cuft/sec
1 MGD | = = | 1,000 grams
448.8 gpm
1.55 cuft/sec | | | PUMP
RATE/GPM | = | <u>VOLUME</u>
TIME | | 1 MGD
1 HP
1 HP | =
=
= | 694.5 gpm
33,000 ft.lbs./min
745 kilowatt | | | PERCENT
FLOW | = | ACTUAL FLOW AVERAGE FLOW | | 1 cubic yard | = | 27 cubic feet | | | DETENTION
TIME | = | VOLUME (GALS)
FLOW (GPM) | | <u>OBJECT</u>
Rectangle | | AREA
Length' x | <u></u> | VOLUME (ft3) Length' x Width' x Height' | KILOWATTS | = | HORSEPOWER x 0.746 | | Circle
Triangle
Cylinder
Sphere | | .785 x I
1/2 (Base' x |)' x D' | .5236 x D' x D' x D' | KILOWATT
HOURS | = | KILOWATTS USED x HRS
OPERATED | | | | | | .785 x D' x D' x Length' | POWER COST | = | KILOWATT HRS USED x
COST/KILOWATT | | Di | iame | eter (D) = 2 x Radius | | Circumference = 3.1416 x D | D Perimeter = Sum of all sides | | | Lbs./day = Flow/MGD X 8.34 X Concentration mg/l Concentration mg/l = Lbs./day ÷ Flow/MGD X 8.34 Flow/MGD = Lbs./day ÷ Concentration mg/l X 8.34